Given a 2D board containing 'X'
and 'O'
, capture all regions surrounded by 'X'
.
A region is captured by flipping all 'O'
s into 'X'
s in that surrounded region.
For example,
X X X XX O O XX X O XX O X X
After running your function, the board should be:
X X X XX X X XX X X XX O X X
这道题有点像围棋,将包住的O都变成X,但不同的是边缘的O不算被包围,跟之前那道很类似,都可以用DFS来解。刚开始我的思路是DFS遍历中间的O,如果没有到达边缘,都变成X,如果到达了边缘,将之前变成X的再变回来。但是这样做非常的不方便,在网上看到大家普遍的做法是扫面矩阵的四条边,如果有O,则用DFS遍历,将所有连着的O都变成另一个字符,比如\$,这样剩下的O都是被包围的,然后将这些O变成X,把$变回O就行了。代码如下:
解法一:
class Solution {public: void solve(vector>& board) { for (int i = 0; i < board.size(); ++i) { for (int j = 0; j < board[i].size(); ++j) { if ((i == 0 || i == board.size() - 1 || j == 0 || j == board[i].size() - 1) && board[i][j] == 'O') solveDFS(board, i, j); } } for (int i = 0; i < board.size(); ++i) { for (int j = 0; j < board[i].size(); ++j) { if (board[i][j] == 'O') board[i][j] = 'X'; if (board[i][j] == '$') board[i][j] = 'O'; } } } void solveDFS(vector > &board, int i, int j) { if (board[i][j] == 'O') { board[i][j] = '$'; if (i > 0 && board[i - 1][j] == 'O') solveDFS(board, i - 1, j); if (j < board[i].size() - 1 && board[i][j + 1] == 'O') solveDFS(board, i, j + 1); if (i < board.size() - 1 && board[i + 1][j] == 'O') solveDFS(board, i + 1, j); if (j > 1 && board[i][j - 1] == 'O') solveDFS(board, i, j - 1); } }};
有网友提问上面的代码中红色部分为啥是j > 1 而不是j > 0,为啥j > 0无法通过OJ的最后一个大数据集合,我开始也不知道其中奥秘,直到被另一个网友提醒在本地机子上可以通过最后一个大数据集合,于是我也写了一个程序来验证,请参见。发现j > 0是正确的,可以得到相同的结果。
下面这种解法还是DFS解法,只是递归函数的写法稍有不同,但是本质上并没有太大的区别,参见代码如下:
解法二:
class Solution {public: void solve(vector>& board) { if (board.empty() || board[0].empty()) return; int m = board.size(), n = board[0].size(); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (i == 0 || i == m - 1 || j == 0 || j == n - 1) { if (board[i][j] == 'O') dfs(board, i , j); } } } for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (board[i][j] == 'O') board[i][j] = 'X'; if (board[i][j] == '$') board[i][j] = 'O'; } } } void dfs(vector > &board, int x, int y) { int m = board.size(), n = board[0].size(); vector > dir{ { 0,-1},{-1,0},{ 0,1},{ 1,0}}; board[x][y] = '$'; for (int i = 0; i < dir.size(); ++i) { int dx = x + dir[i][0], dy = y + dir[i][1]; if (dx >= 0 && dx < m && dy > 0 && dy < n && board[dx][dy] == 'O') { dfs(board, dx, dy); } } }};
我们也可以使用迭代的解法,但是整体的思路还是一样的,我们在找到边界上的O后,然后利用队列queue进行BFS查找和其相连的所有O,然后都标记上美元号。最后的处理还是先把所有的O变成X,然后再把美元号变回O即可,参见代码如下:
解法三:
class Solution {public: void solve(vector>& board) { if (board.empty() || board[0].empty()) return; int m = board.size(), n = board[0].size(); for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (i != 0 && i != m - 1 && j != 0 && j != n - 1) continue; if (board[i][j] != 'O') continue; board[i][j] = '$'; queue q{ {i * n + j}}; while (!q.empty()) { int t = q.front(), x = t / n, y = t % n; q.pop(); if (x >= 1 && board[x - 1][y] == 'O') {board[x - 1][y] = '$'; q.push(t - n);} if (x < m - 1 && board[x + 1][y] == 'O') {board[x + 1][y] = '$'; q.push(t + n);} if (y >= 1 && board[x][y - 1] == 'O') {board[x][y - 1] = '$'; q.push(t - 1);} if (y < n - 1 && board[x][y + 1] == 'O') {board[x][y + 1] = '$'; q.push(t + 1);} } } } for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (board[i][j] == 'O') board[i][j] = 'X'; if (board[i][j] == '$') board[i][j] = 'O'; } } }};
类似题目:
参考资料: